

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-XII

Subject: MATHEMATICS

Chapter Name : Three Dimentional Geometry (Chap : 11)

Total : 12 Marks (expected) [MCQ(1)-2 Mark, VSA-(2)-2 Marks, SA-(1)-3 Marks, LA(1)-5 Marks]

Level - 1 & 2 (Higher Order)

Section - A

MCQ Type :

1. The angle between the two diagonals of a cube is

Ⓐ $\frac{\pi}{6}$

Ⓑ $\frac{\pi}{4}$

Ⓒ $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Ⓓ $\cos^{-1}\left(\frac{1}{3}\right)$

(Hints : DCS, DRS)

2. If $P(x,y,z)$ is a point in the space at a distance r from the origin O , then the direction cosines of the line OP are

Ⓐ $\frac{r}{x}, \frac{r}{y}, \frac{r}{z}$

Ⓑ rx, ry, rz

Ⓒ $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$

Ⓓ None of these

(Hints : DCS)

3. If a line passing through the point with position vector \vec{a} and parallel to vector \vec{b} , then the vector equation of the line is -

Ⓐ $\vec{r} = \vec{a} + \vec{b}$

Ⓑ $\vec{r} = \vec{a} - t\vec{b}$

Ⓒ $\vec{r} = \vec{a} + t\vec{b}$

Ⓓ None of these

(Hints : Equation of line)

4. The direction ratios of the line $3x - 2 = 2y + 1 = 2z - 4$ are proportional to

Ⓐ $\frac{1}{3}, -\frac{1}{2}, \frac{1}{2}$

Ⓑ $-\frac{1}{3}, \frac{1}{2}, \frac{1}{2}$

Ⓒ $\frac{1}{3}, \frac{1}{2}, \frac{1}{2}$

Ⓓ $\frac{1}{3}, \frac{1}{2}, -\frac{1}{2}$

(Hints : DRS)

5. The lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{6}$ are

Ⓐ coincident

Ⓑ skew

Ⓒ intersecting

Ⓓ parallel

(Hints : DRS)

6. A line passing through a point having position vector \vec{a} and perpendicular to the lines $\vec{r} = \vec{a}_1 + \lambda_1 \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \lambda_2 \vec{b}_2$ is

Ⓐ $\vec{r} = \vec{a} + t(\vec{b}_1 \times \vec{b}_2)$

Ⓑ $\vec{r} = \vec{a} + t \cdot (\vec{b}_1 \cdot \vec{b}_2)$

Ⓒ $\vec{r} \cdot \vec{a} = t \cdot (\vec{b}_1 \cdot \vec{b}_2)$

Ⓓ $\vec{r} - \vec{a} = (\vec{b}_1 \times \vec{b}_2)$

(Hints : DCS, DRS)

7. If $\vec{r} = (3\hat{i} + \hat{j} - 4\hat{k}) + t(\hat{i} + \hat{j} + \hat{k})$ and $\vec{r} = (5\hat{i} - \hat{j}) + t'(3\hat{i} + 2\hat{j} + 4\hat{k})$ then $\cos \theta = ?$

Ⓐ $\sqrt{\frac{27}{29}}$

Ⓑ $\frac{10}{26}$

Ⓒ $\frac{9}{\sqrt{29}}$

Ⓓ $\frac{10}{\sqrt{26}}$

(Hints : Angle formula)

Section - B

Very Short Answer (VSA) :

1. Can the numbers $-1, 1, 0$ be the direction cosines of a straight line ? can the above numbers be the direction ratios of a straight line ?

(Hints : DRS, DCS)

2. The direction angle of a straight line are $120^\circ, 45^\circ, 30^\circ$. Is the statement true ? Give reason for your answer.

(Hints : DCS)

3. The coordinates of the projection of the point $P(2, -3, 5)$ on Y axis is $(0, -\beta, 0)$. Find the value of β .

(Hints : $\cos \alpha, \cos \beta, \cos \gamma$)

4. Write the cartesian and vector equation of z axis .

(Hints : Equation of line)

5. Write the coordinate axis to which the line.

$$\frac{x-5}{2} = \frac{y+6}{0} = \frac{z-3}{2} \text{ is perpendicular}$$

(Hints : Angle between the lines)

6. Find the angle between the lines whose direction ratios are given by $3, 4, 5$ and $1, 1, -2$.

(Hints : Angle between the lines)

7. Find the equation of a line passing through the point $(1, 2, 3)$ and parallel to the line $\frac{x-1}{2} = \frac{7-y}{3} = -z$

(Hints : Equation of line)

Section - C

Short Answer Question (SA) :

1. Find the acute angle between the two straight lines whose direction cosines are given by

$$l + m + n = 0, \quad l^2 + m^2 - n^2 = 0$$

(Hints : DCS)

2. Let $\vec{P} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{Q} = 4\hat{i} - 3\hat{j}$. Find the acute angle between \vec{P} and \vec{Q} .

(Hints : Angle between two vectors)

3. Prove that the acute angle between two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$

(Hints : Angle between the lines)

4. A straight line L makes angles α, β, γ and δ with the four diagonals of a cube, prove that,

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = \frac{8}{3}$$

(Hints : DCS)

5. Find the direction ratios of a straight line which makes equal angles with the coordinate axes. How many such straight line are there ?

(Hints : DRS)

6. A straight line in the zx plane makes an angle of $\frac{\pi}{3}$ with the z -axis ; find the direction cosines of the line.

(Hints : DCS)

7. If α, β, γ are the direction angles of a straight line, then prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.

(Hints : $l^2 + m^2 + n^2 = 1$)

8. Let l_1, m_1, n_1 and l_2, m_2, n_2 be the direction ratios of two given straight lines. Find the direction ratios of a straight line which is perpendicular to both the given straight lines.

(Hints : DCS)

9. Show that the line joining the points P and Q with position vectors $\vec{p} = p_1\hat{i} + p_2\hat{j} + p_3\hat{k}$ and $\vec{q} = q_1\hat{i} + q_2\hat{j} + q_3\hat{k}$ passes through the origin if $\vec{p} \cdot \vec{q} = |\vec{p}| |\vec{q}|$

(Hints : Equation of line)

10. Find the points on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of 5 units from the point P(1, 3, 3).

(Hints : take general point on the line)

11. Show that the points whose position vectors are $4\hat{i} + 5\hat{k}$, $\hat{i} + \hat{j} + 3\hat{k}$ and $-5\hat{i} + 3\hat{j} - \hat{k}$ and a are collinear.

(Hints : Straight line)

12. The equation of a line is given by $x = by + c$, $z = ay + d$, write it in symmetric form and vector form.

(Hints : Lines in different form)

13. The line $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$ intersects the curve $xy = c^2$, $z = 0$. Then the value of c^2 is _____.

(Hints : take general point on the line)

14. Find S.D between the lines : $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$ & $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{1}$

(Hints : formula of S.D)

Section - D

Long Answer Question (LA) :

1. Find the distance between the lines :

$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \text{ and } \vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(2\hat{i} + 3\hat{j} + 6\hat{k})$$

(Hints : SD formula)

2. Prove that the lines l_1 and l_2 are not intersecting lines.

$$\text{where } l_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}, \quad l_2: \frac{x}{2} = \frac{y-5}{3} = \frac{z+1}{4}$$

(Hints : $SD \neq 0$)

3. The base of a triangle is 5 units long and has equation $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{4}$. Find the area of the triangle if its remaining vertex is at (1, -1, 2).

(Hints : Calculate foot of the perpendicular of (1, -1, 2))

4. Show that the lines $\vec{r} = (\hat{i} + \hat{j} + \hat{k}) + t(\hat{i} - \hat{j} + \hat{k})$ are $\vec{r} = (3\hat{i} - \hat{k}) + s(4\hat{j} - 16\hat{k})$ intersect and find the position vector of their point of intersection.

(Hints : Compaining i, j, k components from both sides)

5. Prove that the straight lines whose direction cosines are given by the equations.

$$al + bm + cn = 0 \text{ and } fmn + gnl + hlm = 0 \text{ are at right angles if}$$

$$\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$$

(Hints : DCS, DRS)

6. Prove that the straight lines whose direction cosines are given by the equations.

$$al + bm + cn = 0 \text{ and } fmn + gnl + hlm = 0 \text{ are parallel if}$$

$$a^2f^2 + b^2h^2 + c^2h^2 - 2(abfg + gcgh + cahf) = 0$$

(Hints : DCS, DRS)

7. A straight line makes angles α, β, γ and δ with the four diagonals of a cube, prove that

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = \frac{4}{3}$$

(Hints : DCS, DRS)

ANSWER

Section - A

1. (D)
2. (C)
3. (C)
4. (C)
5. (D)
6. (A)
7. (A)

Section - B

1. No, Yes
2. No
3. 3
4. $\frac{x-x_1}{0} = \frac{y-y_1}{0} = \frac{z-z_1}{c}, c \neq 0$

$$r = \alpha + t(c\hat{k}), c \neq 0$$

5. Y axis
6. $\cos^{-1}\left(\frac{-\sqrt{3}}{10}\right)$
7. $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{-1}$

Section - C

1. $\frac{\pi}{3}$
2. $\theta = \cos^{-1}\left(\frac{14}{15}\right)$
5. $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$, Two,
6. $\left(\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)$
8. $m_1n_2 - m_2n_1, n_1l_2 - n_2l_1, l_1m_2 - l_2m_1$

10. (4, 3, 7) (-2, -1, 3)
12. $\frac{x-c}{b} = \frac{y-o}{1} = \frac{z-d}{a}$
 $\vec{r} = (ci + dk) + t(bi + \tilde{j} + ak)$
13. $C^2 = 5$

$$14. SD = \sqrt{2}$$

Section - D

1. $\frac{\sqrt{293}}{7}$
2. S.D $\neq 0$
3. $\sqrt{\frac{1775}{28}}$
4. $(3\hat{i} - \hat{j} + 3\hat{k})$